Vitamin and mineral requirements in human nutrition

Second edition

WHO Library Cataloguing-in-Publication Data

 Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements (1998 : Bangkok, Thailand).
Vitamin and mineral requirements in human nutrition : report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998.

1.Vitamins – standards 2.Micronutrients – standards 3.Trace elements – standards 4.Deficiency diseases – diet therapy 5.Nutritional requirements I.Title.

ISBN 92 4 154612 3

(LC/NLM Classification: QU 145)

© World Health Organization and Food and Agriculture Organization of the United Nations 2004

All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; e-mail: bookorders@who.int). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; e-mail: permissions@who.int), or to Chief, Publishing and Multimedia Service, Information Division, Food and Agriculture Organization of the United Nations, 00100 Rome, Italy.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization and the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization and the Food and Agriculture Organization of the United Nations in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

The World Health Organization and the Food and Agriculture Organization of the United Nations do not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.

Designed by minimum graphics Typeset by SNP Best-set Typesetter Ltd., Hong Kong Printed in China by Sun Fung

Contents

Foreword			xiii 		
Acknowledgements				XV11	
1.	Concepts, definitions and approaches used to define nutritional				
	need	ls and	recommendations	1	
	1.1	Intro	luction	1	
	1.2	Defin	ition of terms	2	
		1.2.1	Estimated average requirement	2	
		1.2.2	Recommended nutrient intake	2	
		1.2.3	Apparently healthy	3	
		1.2.4	Protective nutrient intake	3	
		1.2.5	Upper tolerable nutrient intake level	4	
		1.2.6	Nutrient excess	4	
		1.2.7	Use of nutrient intake recommendations in population		
			assessment	5	
	1.3 Approaches used in estimating nutrient intakes for optimal				
		health	L Contraction of the second	6	
		1.3.1	The clinical approach	8	
		1.3.2	Nutrient balance	8	
		1.3.3	Functional responses	9	
		1.3.4	Optimal intake	10	
	1.4	Concl	lusions	12	
	Refe	erences		14	
2.	Vita	min A		17	
	2.1	Role o	of vitamin A in human metabolic processes	17	
		2.1.1	Overview of vitamin A metabolism	17	
		2.1.2	Biochemical mechanisms for vitamin A functions	19	
	2.2	Popul	ations at risk for, and consequences of, vitamin A		
		deficie	ency	20	
		2.2.1	Definition of vitamin A deficiency	20	
		2.2.2	Geographic distribution and magnitude	20	
	2.2.3 Age and sex				

		2.2.4	Risk factors	22
		2.2.5	Morbidity and mortality	23
	2.3	Units	of expression	24
	2.4	Sourc	es and supply patterns of vitamin A	27
			Dietary sources	27
		2.4.2	Dietary intake and patterns	27
		2.4.3	World and regional supply and patterns	27
	2.5	Indica	ators of vitamin A deficiency	29
		2.5.1	Clinical indicators of vitamin A deficiency	29
		2.5.2	Subclinical indicators of vitamin A deficiency	30
	2.6	Evide	nce used for making recommendations	31
		2.6.1	Infants and children	32
		2.6.2	Adults	33
		2.6.3	Pregnant women	33
		2.6.4	Lactating women	34
		2.6.5	Elderly	35
	2.7	Recor	nmendations for vitamin A requirements	35
	2.8	Toxic	ity	36
	2.9		nmendations for future research	37
	Refe	erences		37
3.	Vita	min D)	45
	3.1	Role	of vitamin D in human metabolic processes	45
		3.1.1	Overview of vitamin D metabolism	45
		3.1.2	Calcium homeostasis	46
	3.2	Popul	lations at risk for vitamin D deficiency	48
		3.2.1	Infants	48
		3.2.2	Adolescents	48
		3.2.3	Elderly	48
		3.2.4	Pregnant and lactating women	49
	3.3	Evide	nce used for estimating recommended intakes	51
		3.3.1	Lack of accuracy in estimating dietary intake and skin	
			synthesis	51
		3.3.2	Use of plasma 25-OH-D as a measure of vitamin D	
			status	51
	3.4		nmended intakes for vitamin D	53
	3.5	Toxic	•	54
	3.6		nmendations for future research	55
	Refe	erences		55
4.	Calo	cium		59
	4.1	Intro	duction	59
	4.2	Chem	istry and distribution of calcium	60

	4.3	Biological role of calcium	61
	4.4	Determinants of calcium balance	62
		4.4.1 Calcium intake	62
		4.4.2 Calcium absorption	62
		4.4.3 Urinary calcium	65
		4.4.4 Insensible losses	66
	4.5	Criteria for assessing calcium requirements and	
		recommended nutrient intakes	66
		4.5.1 Methodology	66
		4.5.2 Populations at risk for calcium deficiency	69
	4.6	Recommendations for calcium requirements	69
		4.6.1 Infants	69
		4.6.2 Children	70
		4.6.3 Adolescents	71
		4.6.4 Adults	72
		4.6.5 Menopausal women	72
		4.6.6 Ageing adults	73
		4.6.7 Pregnant women	73
		4.6.8 Lactating women	73
	4.7	Upper limits	74
	4.8	Comparisons with other recommendations	74
	4.9	Ethnic and environmental variations in the prevalence of	
		osteoporosis	75
		4.9.1 Ethnicity	76
		4.9.2 Geography	76
		4.9.3 Culture and diet	77
		4.9.4 The calcium paradox	78
	4.10	8 1	78
		4.10.1 Sodium	78
		4.10.2 Protein	79
		4.10.3 Vitamin D	81
		4.10.4 Implications	81
		Conclusions	83
		Recommendations for future research	85
	Refer	rences	85
5.	Vitar	nin E	94
	5.1	Role of vitamin E in human metabolic processes	94
	5.2	Populations at risk for vitamin E deficiency	97
	5.3	Dietary sources and possible limitations to vitamin E supply	100
	5.4	Evidence used for estimating recommended intakes	101
	5.5	Toxicity	103

	5.6	Recor	nmendations for future research	103
	Refe	erences		104
6.	Vita	ımin K		108
	6.1	Intro	duction	108
	6.2	Biolo	gical role of vitamin K	108
	6.3	Overv	view of vitamin K metabolism	110
		6.3.1	Absorption and transport	110
		6.3.2	Tissue stores and distribution	111
		6.3.3	Bioactivity	112
		6.3.4	Excretion	112
	6.4	Popul	lations at risk for vitamin K deficiency	113
		6.4.1	Vitamin K deficiency bleeding in infants	113
		6.4.2	Vitamin K prophylaxis in infants	114
		6.4.3	Vitamin K deficiency in adults	115
	6.5	Sourc	es of vitamin K	115
		6.5.1	Dietary sources	115
		6.5.2	Bioavailability of vitamin K from foods	116
		6.5.3	Importance of intestinal bacterial synthesis as	
			a source of vitamin K	117
	6.6		mation relevant to the derivation of recommended	
		vitam	in K intakes	117
		6.6.1	Assessment of vitamin K status	117
			Dietary intakes in infants and their adequacy	118
		6.6.3	Factors of relevance to classical vitamin K deficiency	
			bleeding	119
		6.6.4	Factors of relevance to late vitamin K deficiency	
			bleeding	120
		6.6.5	Dietary intakes in older infants, children, and adults	
			and their adequacy	120
	6.7		nmendations for vitamin K intakes	122
		6.7.1	Infants 0–6 months	122
		6.7.2	Infants (7–12 months), children, and adults	125
	6.8	Toxic		126
	6.9		nmendations for future research	126
	Kete	erences		126
7.		umin C		130
	7.1		duction	130
	7.2		of vitamin C in human metabolic processes	130
		7.2.1	Background biochemistry	130
		7.2.2	Enzymatic functions	130

		7.2.3	Miscellaneous functions	131
	7.3	Conse	equences of vitamin C deficiency	131
	7.4	Popul	ations at risk for vitamin C deficiency	132
	7.5	Dieta	ry sources of vitamin C and limitations to vitamin C	
		suppl	У	134
	7.6	Evide	nce used to derive recommended intakes of vitamin C	135
		7.6.1	Adults	135
		7.6.2	Pregnant and lactating women	137
		7.6.3	Children	137
		7.6.4	Elderly	138
		7.6.5	Smokers	138
	7.7	Recor	nmended nutrient intakes for vitamin C	138
	7.8	Toxic	ity	139
	7.9	Recor	nmendations for future research	139
	Refe	rences		139
8.	Diet	ary an	itioxidants	145
	8.1	Nutri	ents with an antioxidant role	145
	8.2	The n	eed for biological antioxidants	145
	8.3	Pro-o	xidant activity of biological antioxidants	147
	8.4	Nutri	ents associated with endogenous antioxidant mechanisms	150
	8.5	Nutri	ents with radical-quenching properties	151
		8.5.1	Vitamin E	151
		8.5.2	Vitamin C	153
		8.5.3	β -Carotene and other carotenoids	154
	8.6	A req	uirement for antioxidant nutrients	156
	8.7	Recor	nmendations for future research	158
	Refe	rences		158
9.	Thia	imine,	riboflavin, niacin, vitamin B6, pantothenic acid,	
	and	biotin		164
	9.1	Intro	luction	164
	9.2	Thian	nine	165
		9.2.1	Background	165
		9.2.2	Biochemical indicators	166
		9.2.3	Factors affecting requirements	167
		9.2.4	Evidence used to derive recommended intakes	167
		9.2.5	Recommended nutrient intakes for thiamine	168
	9.3	Ribof	lavin	169
		9.3.1	Background	169
		9.3.2	Biochemical indicators	170
		9.3.3	Factors affecting requirements	171

		9.3.4	Evidence used to derive recommended intakes	171
		9.3.5	Recommended nutrient intakes for riboflavin	172
	9.4	Niacii	1	173
		9.4.1	Background	173
		9.4.2	Biochemical indicators	174
		9.4.3	Factors affecting requirements	174
		9.4.4	Evidence used to derive recommended intakes	175
		9.4.5	Recommended nutrient intakes for niacin	175
	9.5	Vitam	in B ₆	175
		9.5.1	Background	175
		9.5.2	Biochemical indicators	177
		9.5.3	Factors affecting requirements	178
		9.5.4	Evidence used to derive recommended intakes	178
		9.5.5	Recommended nutrient intakes for vitamin B ₆	179
	9.6	Panto	thenate	180
		9.6.1	Background	180
		9.6.2	Biochemical indicators	180
			Factors affecting requirements	181
		9.6.4	Evidence used to derive recommended intakes	181
		9.6.5	Recommended nutrient intakes for pantothenic acid	182
	9.7	Biotin	L	182
		9.7.1	8	182
		9.7.2	Biochemical indicators	183
			Evidence used to derive recommended intakes	183
		9.7.4	Recommended nutrient intakes for biotin	184
	9.8	Gener	al considerations for B-complex vitamins	184
		9.8.1	Notes on suggested recommendations	184
		9.8.2	Dietary sources of B-complex vitamins	185
	9.9	Recon	nmendations for future research	185
	Refer	ences		186
10.	Selen	ium		194
	10.1	Role o	of selenium in human metabolic processes	194
	10.2		um deficiency	196
		10.2.1		196
		10.2.2	Keshan disease	197
		10.2.3	Kaschin-Beck disease	198
		10.2.4	Selenium status and susceptibility to infection	198
		10.2.5		200
	10.3		nfluence of diet on selenium status	200
	10.4	Absor	ption and bioavailability	204
	10.5		ia for assessing selenium requirements	204
			- *	

	10.6	Recommended selenium intakes	206
		10.6.1 Adults	206
		10.6.2 Infants	206
		10.6.3 Pregnant and lactating women	208
	10.7	Upper limits	209
	10.8	Comparison with other estimates	209
	10.9	Recommendations for future research	210
	Refer	rences	211
11.	Mag	nesium	217
	11.1	Tissue distribution and biological role of magnesium	217
	11.2	Populations at risk for, and consequences of,	
		magnesium deficiency	218
	11.3	Dietary sources, absorption, and excretion of magnesium	218
	11.4	Criteria for assessing magnesium requirements and allowances	220
	11.5	Recommended intakes for magnesium	222
	11.6	Upper limits	225
	11.7	Comparison with other estimates	225
	11.8	Recommendations for future research	225
	Refei	rences	226
12.	Zinc		230
	12.1	Role of zinc in human metabolic processes	230
	12.2	Zinc metabolism and homeostasis	231
	12.3	Dietary sources and bioavailability of zinc	232
	12.4	Populations at risk for zinc deficiency	234
	12.5	Evidence used to estimate zinc requirements	235
		12.5.1 Infants, children, and adolescents	236
		12.5.2 Pregnant women	238
		12.5.3 Lactating women	238
		12.5.4 Elderly	239
	12.6	Interindividual variations in zinc requirements and	
		recommended nutrient intakes	239
	12.7	Upper limits	240
	12.8	Adequacy of zinc intakes in relation to requirement estimates	241
		Recommendations for future research	242
	Refei	rences	243
13.	Iron		246
	13.1	Role of iron in human metabolic processes	246
	13.2	Iron metabolism and absorption	246
		13.2.1 Basal iron losses	246
		13.2.2 Requirements for growth	247

		13.2.3	Menstrual iron losses	249
		13.2.4	Iron absorption	250
		13.2.5	Inhibition of iron absorption	252
		13.2.6	Enhancement of iron absorption	254
		13.2.7	Iron absorption from meals	255
		13.2.8	Iron absorption from the whole diet	255
		13.2.9	Iron balance and regulation of iron absorption	256
	13.3	Iron de	eficiency	258
		13.3.1	Populations at risk for iron deficiency	258
			Indicators of iron deficiency	260
		13.3.3	Causes of iron deficiency	261
			Prevalence of iron deficiency	262
		13.3.5	Effects of iron deficiency	263
	13.4	Iron re	equirements during pregnancy and lactation	264
	13.5	Iron su	pplementation and fortification	267
	13.6		ce used for estimating recommended nutrient intakes	268
	13.7	Recom	mendations for iron intakes	271
	13.8	Recom	mendations for future research	272
	Refer	ences		272
14.	Vitar	nin B ₁₂		279
	14.1	Role of	f vitamin B ₁₂ in human metabolic processes	279
	14.2	Dietary	y sources and availability	279
	14.3	Absorp	ption	280
	14.4	Popula	tions at risk for, and consequences of, vitamin B_{12}	
		deficier	ncy	280
		14.4.1	Vegetarians	280
		14.4.2	Pernicious anaemia	281
		14.4.3	Atrophic gastritis	281
	14.5	Vitami	n B ₁₂ interaction with folate or folic acid	282
	14.6	Criteri	a for assessing vitamin B ₁₂ status	283
	14.7	Recom	mendations for vitamin B ₁₂ intakes	284
		14.7.1	Infants	285
		14.7.2	Children	285
		14.7.3	Adults	285
		14.7.4	Pregnant women	286
		14.7.5	Lactating women	286
	14.8	Upper		286
	14.9	Recom	mendations for future research	287
	Refer	ences		287
15.	Folat	e and fo	olic acid	289
	15.1	Role of	f folate and folic acid in human metabolic processes	289

	15.2	Populations at risk for folate deficiency	294
	15.3	Dietary sources of folate	294
	15.4	Recommended nutrient intakes for folate	295
	15.5	Differences in bioavailability of folic acid and food folate:	
		implications for the recommended intakes	297
	15.6	Considerations in viewing recommended intakes for folate	297
		15.6.1 Neural tube defects	297
		15.6.2 Cardiovascular disease	298
		15.6.3 Colorectal cancer	298
	15.7	Upper limits	299
	15.8	Recommendations for future research	299
	Refe	rences	300
16.	Iodir	ie	303
	16.1	Role of iodine in human metabolic processes	303
	16.2	Populations at risk for iodine deficiency	304
	16.3	5	305
	16.4		306
		16.4.1 Infants	307
		16.4.2 Children	309
		16.4.3 Adults	309
		16.4.4 Pregnant women	310
	16.5		311
		16.5.1 Iodine intake in areas of moderate iodine deficiency	312
		16.5.2 Iodine intake in areas of iodine sufficiency	313
		16.5.3 Excess iodine intake	314
	Refe	rences	315
17.	Food	as a source of nutrients	318
	17.1	Importance of defining food-based recommendations	318
	17.2	Dietary diversification when consuming cereal- and	
		tuber-based diets	325
		17.2.1 Vitamin A	325
		17.2.2 Vitamin C	325
		17.2.3 Folate	326
		17.2.4 Iron and zinc	326
	17.3	How to accomplish dietary diversity in practice	327
	17.4	Practices which will enhance the success of food-based	
		approaches	328
	17.5	Delineating the role of supplementation and food fortification	
		for micronutrients which cannot be supplied by food	329
		17.5.1 Fortification	330

	17.5.2 Supplementation	332
17.6	Food-based dietary guidelines	333
17.7	Recommendations for the future	335
17.8	Future research needs	335
Refer	ences	336
Annex 1:	Recommended nutrient intakes – minerals	338
Annex 2:	Recommended nutrient intakes - water- and fat-soluble	
	vitamins	340

Foreword

In the past 20 years, micronutrients have assumed great public health importance. As a consequence, considerable research has been carried out to better understand their physiological role and the health consequences of micronutrient-deficient diets, to establish criteria for defining the degree of public health severity of micronutrient malnutrition, and to develop prevention and control strategies.

One of the main outcomes of this process is greatly improved knowledge of human micronutrient requirements, which is a crucial step in understanding the public health significance of micronutrient malnutrition and identifying the most appropriate measures to prevent them. This process also led to successive expert consultations and publications organized jointly by the Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO) and the International Atomic Energy Agency (IAEA) providing up-to-date knowledge and defining standards for micronutrient requirements in 1973¹, 1988² and in 1996³. In recognition of this rapidly developing field, and the substantial new advances that have been made since the most recent publication in 1996, FAO and WHO considered it appropriate to convene a new expert consultation to re-evaluate the role of micronutrients in human health and nutrition.

To this end, background papers on the major vitamins, minerals and trace elements were commissioned and reviewed at a Joint FAO/WHO Expert Consultation (Bangkok, 21–30 September 1998). That Expert Consultation was assigned three main tasks:

• Firstly, the Consultation was asked to review the full range of vitamin and mineral requirements-19 micronutrients in all-including their role in

¹ Trace elements in human nutrition. Report of a WHO Expert Committee. Geneva, World Health Organization, 1973 (WHO Technical Report Series, No. 532).

² Requirements of vitamin A, iron, folate and vitamin B₁₂. Report of a Joint FAO/WHO Expert Consultation. Rome, Food and Agriculture Organization of the United Nations, 1988 (FAO Food and Nutrition Series, No. 23).

³ Trace elements in human nutrition and health. Geneva, World Health Organization, 1996.

normal human physiology and metabolism, and conditions of deficiency. This included focusing on and revising the requirements for essential vitamins and minerals, including vitamins A, C, D, E, and K; the B vitamins; calcium; iron; magnesium; zinc; selenium; and iodine, based on the available scientific evidence.

- Secondly, the Consultation was asked to prepare a report that would include recommended nutrient intakes for vitamins A, C, D, E, and K; the B vitamins; calcium; iron; magnesium; zinc; selenium; and iodine. The report should provide practical advice and recommendations which will constitute an authoritative source of information to all those from Member States who work in the areas of nutrition, agriculture, food production and distribution, and health promotion.
- Thirdly, the Consultation was asked to identify key issues for future research concerning each vitamin and mineral under review and to make preliminary recommendations on that research.

The present report presents the outcome of the Consultation combined with up-to-date evidence that has since become available to answer a number of issues which remained unclear or controversial at the time of the Consultation. It was not originally thought that such an evidence-based consultation process would be so controversial, but the reality is that there are surprisingly few data on specific health status indicators on which to base conclusions, whereas there is a great deal of information relative to overt deficiency disease conditions. The defining of human nutrient requirements and recommended intakes are therefore largely based on expert interpretation and consensus on the best available scientific information.

When looking at recommended nutrient intakes (RNIs) in industrialized countries over the last 25 years, it is noticeable that for some micronutrients these have gradually increased. The question is whether this is the result of better scientific knowledge and understanding of the biochemical role of the nutrients, or whether the criteria for setting requirement levels have changed, or a combination of both. The scientific knowledge base has vastly expanded, but it appears that more rigorous criteria for defining recommended levels is also a key factor.

RNIs for vitamins and minerals were initially established on the understanding that they are meant to meet the basic nutritional needs of over 97% of the population. However, a fundamental criterion in industrialized countries has become one of the presumptive role that these nutrients play in "preventing" an increasing range of disease conditions that characterize affected populations. The latter approach implies trying to define the notion of "optimal nutrition", and this has been one of the factors nudging defined requirements to still higher levels.

This shift in the goal for setting RNIs is not without reason. The populations that are targeted for prevention through "optimal nutrition" are characterized by sedentary lifestyles and longer life expectancy. The populations in industrialized countries are ageing, and concern for the health of the older person has grown accordingly. In contrast, the micronutrient needs of population groups in developing countries are still viewed in terms of millions experiencing deficiency, and are then more appropriately defined as those that will satisfy basic nutritional needs of physically active younger populations. Nevertheless, one also needs to bear in mind the double burden of under- and overnutrition, which is growing rapidly in many developing countries.

Concern has been raised about possible differences in micronutrient needs of populations with different lifestyles for a very practical reason. The logic behind the establishment of micronutrient needs of industrialized nations has come about at the same time as a large and growing demand for a wide variety of supplements and fortificants, and manufacturers have responded quickly to meet this market. This phenomenon could easily skew national strategies for nutritional development, with an increased tendency to seek to resolve the micronutrient deficiency problems of developing countries by promoting supplements and fortification strategies, rather than through increasing the consumption of adequate and varied diets. Higher levels of RNIs often set in developed countries can easily be supported because they can be met with supplementation in addition to food which itself is often fortified. In contrast, it often becomes difficult to meet some of the micronutrient needs in some populations of developing countries by consuming locally available food, because foods are often seasonal, and neither supplementation nor fortification reach vulnerable population groups.

Among the nutrients of greatest concern is *calcium*; the RNI may be difficult to meet in the absence of dairy products. The recently revised United States/Canada dietary reference intakes (DRIs) propose only an acceptable intake (AI) for calcium instead of a recommended daily allowance (RDA) in recognition of the fact that intake data are out of step with the relatively high intake requirements observed with experimentally derived values.¹

Another nutrient of concern is *iron*, particularly during pregnancy, where supplementation appears to be essential during the second half of pregnancy.

¹ Food and Nutrition Board. *Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride*. Washington, DC. National Academy Press. 1997.

Folic acid requirements are doubled for women of childbearing age to prevent the incidence of neural tube defects in the fetus. Conversion factors for carotenoids are under review, with the pending conclusion that servings of green leafy vegetables needed to meet *vitamin A* requirements probably need to be at least doubled. In view of this uncertainty, only "recommended safe intakes" rather than RNIs are provided for this vitamin.

Selenium is the subject of growing interest because of its properties as an antioxidant. The RNIs recommended herein for this micronutrient are generally lower than those derived by the United States Food and Nutrition Board because the latter are calculated on a cellular basis, whereas the present report relies on more traditional whole-body estimates.¹

Are these "developments" or "new understandings" appropriate for and applicable in developing countries? The scientific evidence for answering this question is still emerging, but the time may be near when RNIs may need to be defined differently, taking into account the perspective of developing countries based on developing country data. There may be a need to identify some biomarkers that are specific to conditions in each developing country. There is therefore a continuing urgent need for research to be carried out in developing countries about their specific nutrient needs. The current situation also implies that the RNIs for the micronutrients of concern discussed above will need to be re-evaluated as soon as significant additional data are available.

Kraisid Tontisirin Director Division of Food and Nutrition Food and Agriculture Organization of the United Nations *Graeme Clugston* Director Department of Nutrition for Health and Development World Health Organization

¹ Food and Nutrition Board. *Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. A report of the Panel on Dietary Antioxidants and Related Compounds.* Washington, DC, National Academy Press, 2000.

Acknowledgements

We wish to thank the authors of the background papers: Leif Hallberg, Department of Clinical Nutrition, Göteborg University, Annedalsklinikerna, Sahlgrenska University Hospital, Göteborg, Sweden; Glenville Jones, Department of Biochemistry-Medicine, Queen's University, Kingston, Ontario, Canada; Madhu Karmarkar, Senior Adviser, International Council for Control of Iodine Deficiency Disorders, New Delhi, India; Mark Levine, National Institute of Diabetes & Digestive & Kidney Diseases, National Institute of Health, Bethesda, MD, USA; Donald McCormick, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA; Colin Mills, Director, Postgraduate Studies, Rowett Research Institute, Bucksburn, Scotland; Christopher Nordin, Institute of Medical and Veterinary Sciences, Clinical Biochemistry Division, Adelaide, Australia; Maria Theresa Oyarzum, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; Chandrakant Pandav, Regional Coordinator, South-Asia and Pacific International Council for Control of Iodine Deficiency Disorders; and Additional Professor, Center for Community Medicine, All India Institute of Medical Sciences, New Delhi, India; Brittmarie Sandström,¹ Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark; John Scott, Department of Biochemistry, Trinity College, Dublin, Ireland; Martin Shearer, Vitamin K Research Unit of the Haemophilia Centre, The Rayne Institute, St Thomas's Hospital, London, England; Ajay Sood, Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India; David Thurnham, Howard Professor of Human Nutrition, School of Biomedical Sciences, Northern Ireland Centre for Diet and Health, University of Ulster, Londonderry, Northern Ireland; Maret Traber, Linus Pauling Institute, Department of Nutrition and Food Management, Oregon State University, Corvallis, OR, USA; Ricardo Uauy, Director, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago,

¹ Deceased.

Chile; Barbara Underwood, formerly Scholar-in-Residence, Food and Nutrition Board, Institute of Medicine, National Academy of Sciences, Washington, DC, USA; and Cees Vermeer, Faculteit der Geneeskunde Biochemie, Department of Biochemistry, University of Maastricht, Maastricht, Netherlands.

A special acknowledgement is made to the following individuals for their valuable contributions to, and useful comments on, the background documents: Christopher Bates, Medical Research Council, Human Nutrition Research, Cambridge, England; Robert E. Black, Department of International Health, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD, USA; James Blanchard, Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Thomas Bothwell, Faculty of Medicine, University of the Witwatersrand, Witwatersrand, South Africa; Chen Chunming, Senior Adviser, Chinese Academy of Preventive Medicine, Beijing, China; William Cohn, F. Hoffman-La Roche Ltd, Division of Vitamins, Research and Technology Development, Basel, Switzerland; François Delange, International Council for Control of Iodine Deficieny Disorders, Brussels, Belgium; C. Gopalan, President, Nutrition Foundation of India, New Delhi, India; Robert P. Heaney, Creighton University Medical Center, Omaha, NE, USA; Basil Hetzel, Children's Health Development Foundation, Women's and Children's Hospital, North Adelaide, Australia; Glenville Jones, Department of Biochemistry-Medicine, Queen's University, Kingston, Ontario, Canada; Walter Mertz,¹ Rockville, MD, USA; Ruth Oniang'o, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Robert Parker, Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Robert Russell, Professor of Medicine and Nutrition and Associate Director, Human Nutrition Research Center on Aging, Tufts University, United States Department of Agriculture Agricultural Research Service, Boston, MA, USA; Tatsuo Suda, Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; John Suttie, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Henk van den Berg, TNO Nutrition and Food Research Institute, Zeist, Netherlands; Keith West Jr., Johns Hopkins School of Hygiene and Public Health, Division of Human Nutrition, Baltimore, MD, USA; and Parvin Zandi, Head, Department of Food Science and Technology, National Nutrition & Food Technology Research Institute, Tehran, Islamic Republic of Iran.

¹ Deceased.

ACKNOWLEDGEMENTS

Acknowledgements are also made to the members of the Secretariat: Ratko Buzina, formerly Programme of Nutrition, WHO, Geneva, Switzerland; Joan Marie Conway, Consultant, FAO, Rome, Italy; Richard Dawson, Consultant, Food and Nutrition Division, FAO, Rome, Italy; Sultana Khanum, Programme of Nutrition, WHO, Geneva, Switzerland; John R. Lupien, formerly Director, Food and Nutrition Division, FAO, Rome, Italy; Blab Nandi, Senior Food and Nutrition Officer, FAO Regional Office for Asia and the Pacific, Bangkok, Thailand; Joanna Peden, Public Health Nutrition Unit, London School of Hygiene and Tropical Medicine, London, England; and Zeina Sifri, Consultant, Food and Nutrition Division, FAO, Rome, Italy.

Finally, we express our special appreciation to Guy Nantel who coordinated the FAO edition of the report, and to Bruno de Benoist who was responsible for the WHO edition in close collaboration with Maria Andersson. We also wish to thank Kai Lashley and Ann Morgan for their assistance in editing the document and Anna Wolter for her secretarial support.